Comparison of Semiparametric, Parametric, and Nonparametric ROC Analysis for Continuous Diagnostic Tests Using a Simulation Study and Acute Coronary Syndrome Data
نویسندگان
چکیده
We aimed to compare the performance of three different individual ROC methods (one from each of the broad categories of parametric, nonparametric and semiparametric analysis) for assessing continuous diagnostic tests: the binormal method as a parametric method, an empirical approach as a nonparametric method, and a semiparametric method using generalized linear models (GLM). We performed a simulation study with various sample sizes under normal, skewed, and monotone distributions. In the simulations, we used estimates of the ROC curve parameters a and b, estimates of the area under the curve (AUC), the standard errors and root mean square errors (RMSEs) of these estimates, and the 95% AUC confidence intervals for comparison. The three methodologies were also applied to an acute coronary syndrome dataset in which serum myoglobin levels were used as a biomarker for detecting acute coronary syndrome. The simulation and application studies suggest that the semiparametric ROC analysis using GLM is a reliable method when the distributions of the diagnostic test results are skewed and that it provides a smooth ROC curve for obtaining a unique cutoff value. A sample size of 50 is sufficient for applying the semiparametric ROC method.
منابع مشابه
Nonparametric and semiparametric group sequential methods for comparing accuracy of diagnostic tests.
SUMMARY Comparison of the accuracy of two diagnostic tests using the receiver operating characteristic (ROC) curves from two diagnostic tests has been typically conducted using fixed sample designs. On the other hand, the human experimentation inherent in a comparison of diagnostic modalities argues for periodic monitoring of the accruing data to address many issues related to the ethics and ef...
متن کاملA Comparison of the ROC Curve Estimators
The ROC (Receiver Operating Chracteristic) curves are frequently used for different diagnostic purposes. There are several different approaches how to find the suitable estimate of the ROC curve in binormal model. The effective methods which can be used when the sample sizes are small are still very demanded in different applications. In the paper the binormal model is assumed and the parametri...
متن کاملSemiparametric Least Squares Based Estimation of the Receiver Operating Characteristic(ROC) Curve
The receiver operating characteristics (ROC) curve is a standard statistical tool to characterize the accuracy of diagnostic tests when test results are continuous. It provides a complete description of test performance and a meaningful way to compare the performances of different tests. The empirical (nonparametric) ROC curve is the most popular estimator of the ROC curve. Semiparametric estim...
متن کاملA comparison of parametric and nonparametric approaches to ROC analysis of quantitative diagnostic tests.
Receiver operating characteristic (ROC) analysis, which yields indices of accuracy such as the area under the curve (AUC), is increasingly being used to evaluate the performances of diagnostic tests that produce results on continuous scales. Both parametric and nonparametric ROC approaches are available to assess the discriminant capacity of such tests, but there are no clear guidelines as to t...
متن کاملNon-parametric estimation of ROC curve
Receiver operating characteristic (ROC) curve is widely applied in measuring discriminatory ability of diagnostic or prognostic tests. This makes ROC analysis one of the most active research areas in medical statistics. Many parametric and semiparametric estimation methods have been proposed for estimating the ROC curve and its functionals. In this paper, we propose a fully nonparametric Bayesi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012